Characteristic Classes and Fredholm Modules

نویسنده

  • Alexander Gorokhovsky
چکیده

We derive simple explicit formula for the character of a cycle in the Connes’ (b, B)-bicomplex of cyclic cohomology and apply it to write formulas for the equivariant Chern character and characters of finitely-summable bounded Fredholm modules.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Characters of cycles and Fredholm modules

We derive simple explicit formulas for the character of a cycle in the Connes’ (b, B)-bicomplex of cyclic cohomology and give applications to the Fredholm modules and equivariant characteristic classes.

متن کامل

Bounded noncommutative geometry and boundary actions of hyperbolic groups

We use the canonical Lipschitz geometry available on the boundary of a hyperbolic group to construct finitely summable Fredholm modules over the crossed product of the boundary action. The procedure yields a full set of representatives of the K-homology of the crossed product, and all of them are p-summable for p in an appropriate range related to the geometry of the boundary. By restricting th...

متن کامل

Twisted Cyclic Cohomology and Modular Fredholm Modules

Connes and Cuntz showed in [Comm. Math. Phys. 114 (1988), 515–526] that suitable cyclic cocycles can be represented as Chern characters of finitely summable semifinite Fredholm modules. We show an analogous result in twisted cyclic cohomology using Chern characters of modular Fredholm modules. We present examples of modular Fredholm modules arising from Podleś spheres and from SUq(2).

متن کامل

A Successive Numerical Scheme for Some Classes of Volterra-Fredholm Integral Equations

In this paper, a reliable iterative approach, for solving a wide range of linear and nonlinear Volterra-Fredholm integral equations is established. First the approach considers a discretized form of the integral terms where considering some conditions on the kernel of the integral equation it is proved that solution of the discretized form converges to the exact solution of the problem. Then th...

متن کامل

A computational wavelet method for numerical solution of stochastic Volterra-Fredholm integral equations

A Legendre wavelet method is presented for numerical solutions of stochastic Volterra-Fredholm integral equations. The main characteristic of the proposed method is that it reduces stochastic Volterra-Fredholm integral equations into a linear system of equations. Convergence and error analysis of the Legendre wavelets basis are investigated. The efficiency and accuracy of the proposed method wa...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1999